

NcStudio V12双CCD控制系统 用户手册

景

<u> </u>	1
配置及接线	2
产品配置	2
硬件	2
软件	2
接线	3
产品接线图	3
I/O 端口说明	4
安装及卸载	9
安装相机驱动程序	9
安装 NcStudio V12 软件	9
卸载 NcStudio V12 软件	11
软件界面简介	12
功能选项卡	13
坐标	13
轨迹	14
偏置	15
硬盘列表	16
分中	17
CCD 设定	18
参数	20
端口	21
调试	22

	刀库	23
	绝对值设定	24
	操作按钮	25
	端口操作区	25
	刀具信息区	25
	手动操作区	26
	轴方向按钮	26
	进给方式	26
CCD	功能操作	27
	设置相机	28
	加工前设定	29
	设定焦距	29
	测量倍率	30
	设定主轴与 CCD 偏距	31
	设定拍照点	34
	相关概念	34
	设置图片匹配模式	35
	单点拍照	35
	两点拍照	35
	三点拍照	36
	四点拍照	36
	编辑模板	37
	其他设置	40
	图像显示	40
	阵列加工	40

SHANGHAI WEIHONG ELECTRONIC TECHNOLOGY CO., LTD.

CCD 是否使用	41
工件补偿	42
安全偏移	42
模拟加工	43
按刀具阵列加工功能	44
常见问答	46
CCD 是否可能存在误差? 为什么会有误差?	46
一般情况下, CCD 加工出来成品的误差会有多大?	46
若加工后的成品偏差不稳定,该如何排查?	47
如何测试相机或镜头是否固定良好?	47
若拍照点位置设置错误,有何影响?	48
模拟加工与真实加工有何区别?	48
测量倍率时,对选取的特征点是否有要求?	48
术语及参数	49

前言

NcStudio V12 双 CCD 软件可同时控制两台机械结构的运动控制。支持偏置功能、自动分层补偿功能,支持焦点设定、回准焦高度、交换相机、拍照、照片存储、模板取用、相机参数导入导出等相机功能。

本手册主要包含以下内容:

- 1. 配置及接线
- 2. 安装及卸载
- 3. 软件界面简介
- 4. CCD 功能操作
- 5. 加工功能
- 6. 常见问答
- 7. 术语及参数

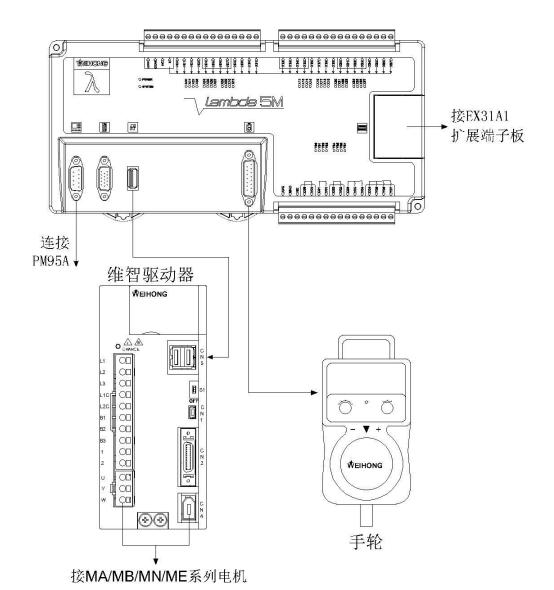
配置及接线

产品配置

硬件

- PM95A 通讯卡
- Lambda 5M 控制器, 1台
- EX31A1 端子板, 4 块
- 工业相机, 2 台
- 维智驱动器 (绝对值)
- MA/MN/ME/MB 系列电机(绝对值)
- 手轮(选配)

软件

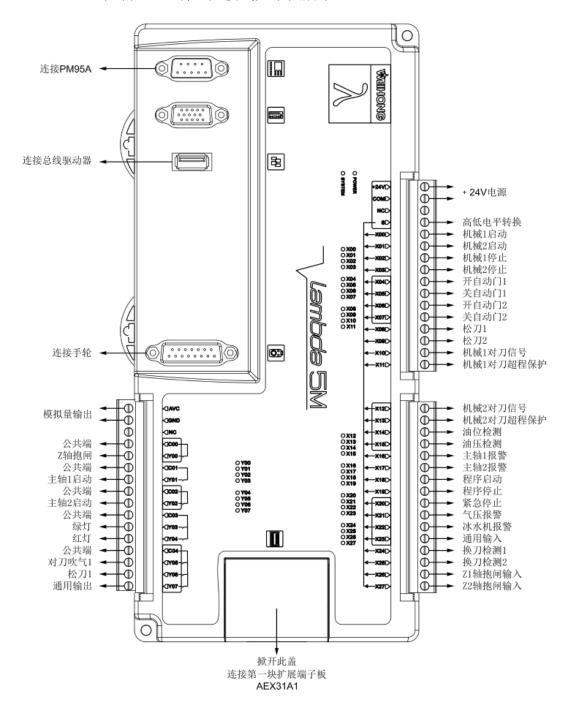

- NcStudio V12 双 CCD 软件
- 相机驱动程序

接线

产品接线图

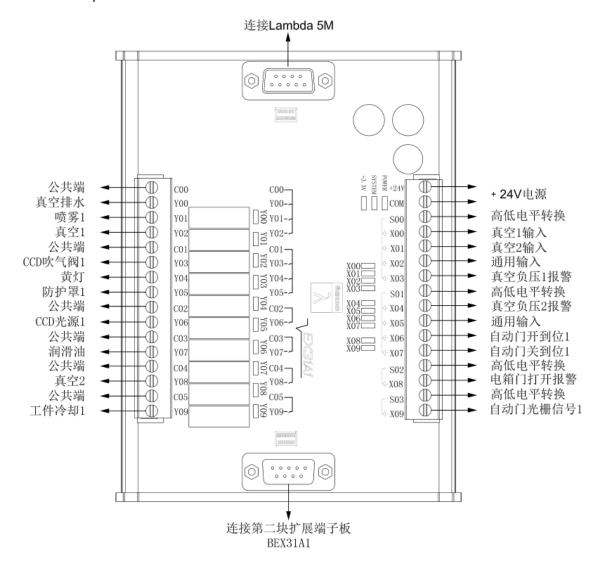
产品接线如下图所示。其中,PM95A 通讯卡安装在主机的 PCI 插槽,相机连接主机 USB 口。

3 / 49

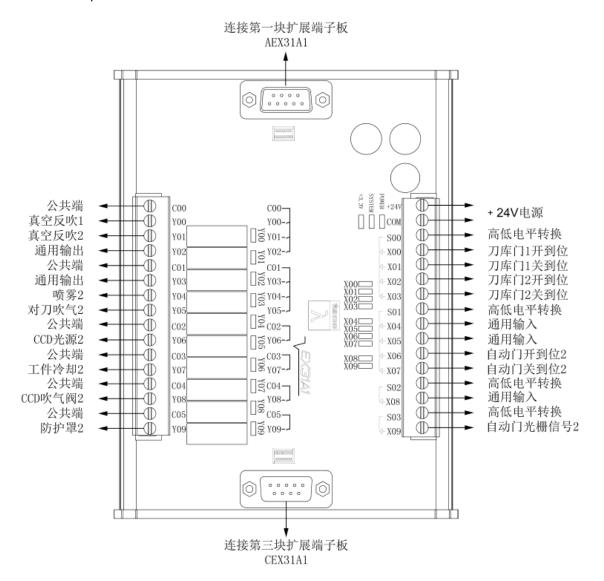


I/O 端口说明

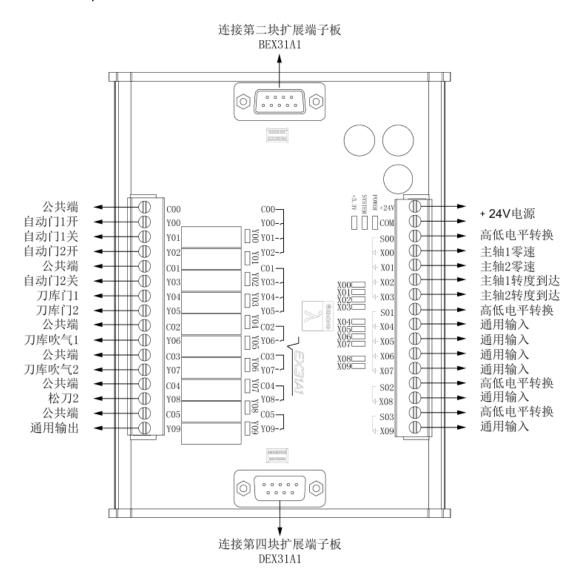
双 CCD 系统使用的端子板包括:


- 1 台 Lambda 5M 控制器
- 4 块 EX31A1 端子板

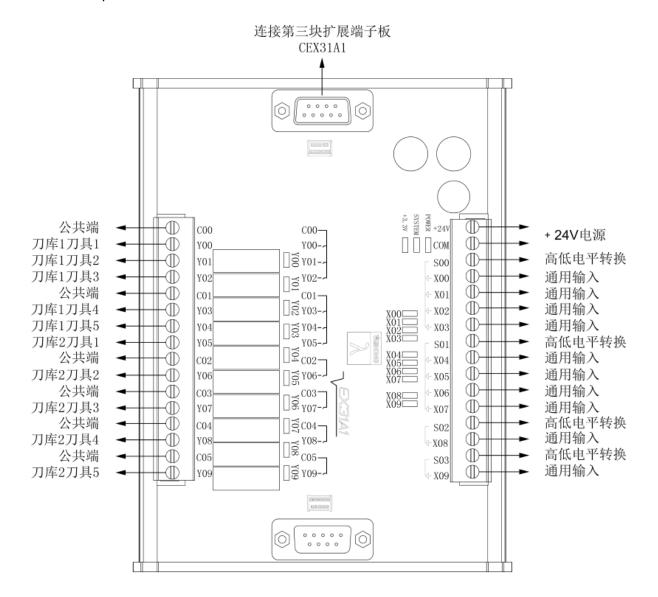
Lambda 5M 控制器 IO 端口及接线如下图所示。



将 4 块扩展端子板分别编号为 AEX31A1、BEX31A1、CEX31A1、DEX31A1。 AEX31A1 I/O 端口及接线如下图所示。



BEX31A1 I/O 端口及接线如下图所示。



CEX31A1 I/O 端口及接线如下图所示。

DEX31A1 I/O 端口及接线如下图所示。

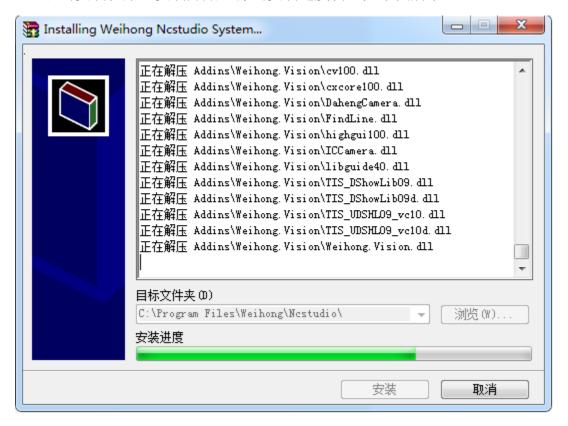
安装及卸载

请按以下顺序安装:

- 1. 安装相机驱动程序。
- 2. 安装 NcStudio V12 软件。

在安装过程中,系统将配套安装"维宏云"插件供用户使用。

安装相机驱动程序

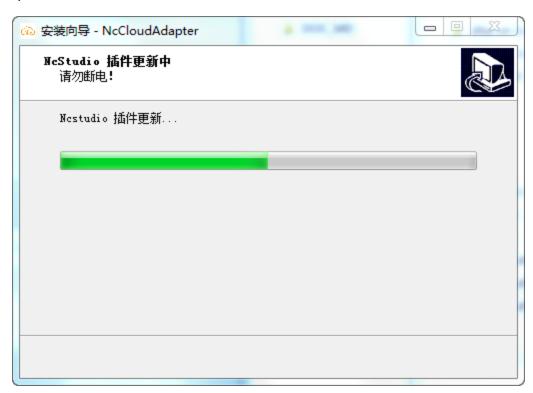

单击相机驱动安装程序,按照安装提示操作,此处不做详述。

注意: 若非首次安装相机驱动,请先卸载,否则将弹出卸载旧版安装包的提示框。

安装 NcStudio V12 软件


安装或升级更新软件,请参照下列步骤操作:

1. 双击安装程序,安装开始,弹出安装进度窗口如下图所示。



2. 选择是否保留之前配置的参数。弹出参数迁移对话框如下图所示。

同时,系统将自动安装"维宏云"插件。弹出 维宏云安装向导 进度窗口如下图所示。

3. NcStudio V12 软件安装完成,单击 确定。

卸载 NcStudio V12 软件

如需卸载 NcStudio 软件,请参照下列步骤操作:

- 1. 删除"C:\Program Files\Weihong"路径下的 NcStudio 文件夹。
- 2. 删除 开始→程序 里的 NcStudio 项以及桌面上的快捷菜单。

软件界面简介

NcStudio V12 双 CCD 系统的操作界面图如下,包括:

- 菜单栏
- 状态栏
- 数控信息栏
- 功能选项卡
- 端口操作区
- 刀具信息区
- 手动操作区

功能选项卡

功能选项卡包括 坐标、 轨迹、 偏置、 硬盘列表、 分中、 CCD 设定、 参数、 端口、 调试、刀库 和 绝对值设定。

其中,默认状态下,可用的功能选项卡包括:

- 坐标
- 轨迹
- CCD 设定

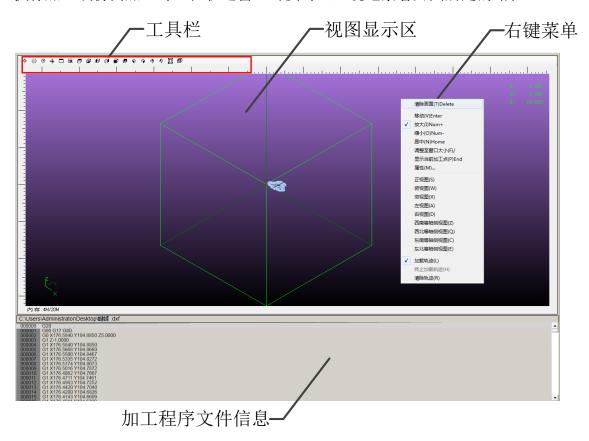
其余功能窗口需要解锁制造商功能后方可使用。

如何解锁制造商功能:

- 1. 点击 文件→解锁制造商功能。
- 2. 在弹出对话框中输入制造商密码即可。

坐标

坐标窗口显示机械坐标系和工件坐标系。



执行"回机械原点"操作后,坐标系显示。标志,如下图所示。

4	由 G	工件坐标	机械坐标	剩余距离
•	х	0.000	0.000	0.000
ø	Υ	0.000	0.000	0.000
æ	Z	0.000	0.000	0.000

轨迹

执行加工或仿真加工时, 在轨迹窗口可实时、直观地察看刀具所走的路径。

轨迹窗口的操作方式有:点击工具栏、右键菜单选择相应快捷键。

偏置

偏置窗口分别包括 **机械 1** 和 **机械 2** 的 **工件偏置** 和 **公共偏置** 。设置偏置便于程序的编程、缩短轴移动距离。

工件偏置、刀具偏置、公共偏置满足以下公式:

工件坐标=机械坐标-工件偏置-刀具偏置-公共偏置

- 工件偏置: 即工件原点相对于机械原点的偏置。
- 公共偏置(外部偏置):用来记录工件原点的临时调整值,任何自动功能都不会调整该值,只可手动修改。

工件偏置和公共偏置的操作示意图如下:

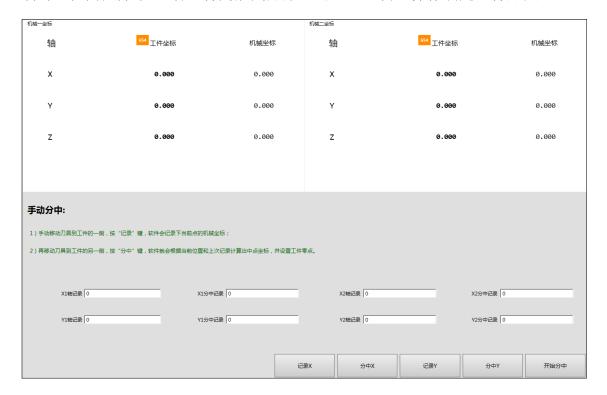
3. 单击所选坐标系卜的各轴输入框,修改偏置值。

4. 单击〈置X/Y/Z〉,将当前点 机械坐标设置到偏置值中。

硬盘列表

硬盘列表包括 本机程序列表 、 可移动磁盘列表 、 加工向导 。

其中,加工向导包括 铣圆形框、 铣圆形底、 铣矩形框、 铣矩形底。


加工向导操作步骤如下:

- 1. 在参数区域内,单击橙色框进行参数设置。
- 2. 单击 保存 或 载入。
- 单击 保存: 只进行参数保存,不载入轨迹。
- 单击 **载入**:则将设置好的图形载入到加工轨迹窗口,即 **轨迹** 窗口将显示设置好 的图形轨迹。

分中

"分中"即"两点分中", 若工件为规则矩形, 可通过此窗口操作确定工件原点。

分中操作步骤如下:

- 1. 关闭主轴,避免因主轴速度过快而产生危险。
- 2. 单击 开始分中。
- 3. 按软件界面上的提示步骤进行操作。

注意: 当分中某轴时,请保持另一轴不动。

CCD 设定

CCD 功能为本手册重点功能,此处仅简单介绍 CCD 设定窗口,具体内容详见 CCD 功能操作。

- **到拍照点:** CCD 移动至对应的拍照点拍照。
- 到准焦高度: 主轴运动至图像最清晰的位置。
- 模拟加工: CCD 在准焦高度下,沿刀路轨迹运动,但不进行实际加工操作。
- **CCD 基本设定** : 切换至 **CCD** 基本设定窗口,可完成与 **CCD** 相关的设定和操作。 需要输入制造商密码后方可访问。

CCD 基本设定窗口如下图所示。

• 参数保存:用于 CCD 设置正确、完成后保存参数。

• 参数导入: 导入之前 参数保存 的参数。

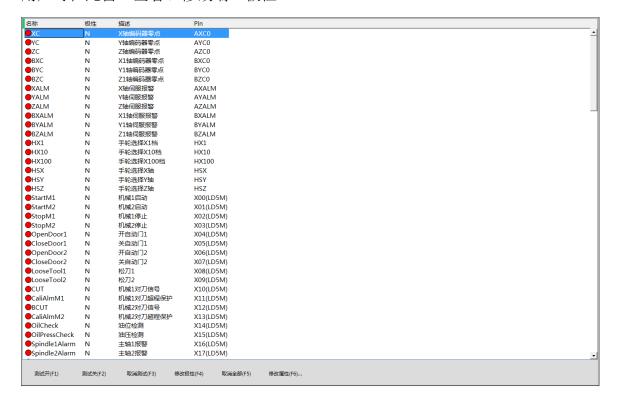
• 回焦点: 相机回到准焦高度。

• 回主界面: 跳转回 CCD 设定窗口。

参数

用户可在此窗口查看参数和修改参数值。

- 按功能:参数分为"操作参数"、"进给轴参数"、"解析参数"和"刀具参数"。
- 按权限:参数分为"操作员参数"、"制造商参数"和"开发商参数",查看制造商参数和开发商参数时需输入密码。


在非空闲状态下,"刀具参数"中的非当前刀具号参数可以修改,其余所有 参数均不能修改。

在设定完机械 1 参数值后,可通过参数窗口右下角 **机械 1 参数全部拷贝到机 械 2** 按钮,将机械 1 的全部参数值应用于机械 2 对应的参数,避免一一重复设定。

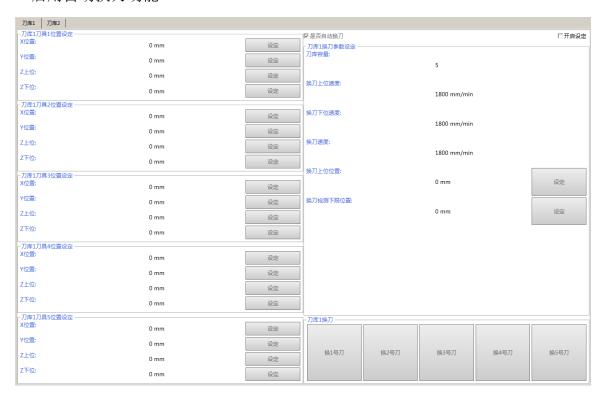
端口

用户可在此窗口查看、修改端口极性。

调试

用户可在此窗口进行加工前机械结构的调试。包括:

- 机械 1 和机械 2 各端口的测试
- 刀库 1 和刀库 2 各端口的测试


┌机械1端□	初起1第二						
主軸1	防护罩1		光源1		冷却1	喷雾1	真空1
开门1	対71		润滑		吹气1	鋳口复位1	
机械2端口							
主軸2	防护置2		光源2		冷却2	喷雾2	真空2
Ж ГЭ2	关门2		润滑		吹气2	端口复位2	
一刀库1端口 ————————————————————————————————————							
刀库门	刀库吹气	刀具1		刀具2	刀具3	刀具4	刀具5
刀库2辆口							
刀库门	刀库吹气	刀具1		刀具2	刀具3	刀具4	刀具5

刀库

用户可在该界面进行刀库相关的操作和设定,包括:

- 设定机械 1、机械 2 对应的刀库容量
- 设定刀库中各刀具位置、刀具寿命
- 设定换刀相关的位置及速度参数
- 一键进行换刀操作
- 启用自动换刀功能

绝对值设定

绝对值设定窗口可进行回机械原点、机械手基准导入/导出操作。

			「开启设定
轴	发送	反馈	基准点
x	69.730	0.000	未设定 超流
Υ	0.000	0.000	未设定 迎症
z	-79.998	0.000	未设定(紀定)
X1	1.000	0.000	未设定(紀定)
Y1	0.000	0.000	未设定 《紀念》
Z1	0.000	0.000	未设定
基准导入/导出	基准导入		基准导出

注意: 绝对值编码器伺服系统具有记录机械原点位置功能,故机床只需在调机时设置一次机械原点即可。若更换软件,需导入之前的基准参数。

操作按钮

用户可通过单击按钮或在键盘输入(F1~F11)实现相应操作,操作按钮图示如下。

其中**,清零(F7)**用于清除坐标轴的工件偏置,可分别对 X、Y、Z 或所有轴的工件坐标进行清零操作,单击**清零(F7)**显示如下。

端口操作区

该区域可检测软、硬件通讯是否良好。

按键呈绿色高亮显示时,表示当前阀门状态为开,此时若端子板上对应的端口灯亮,则表示通讯良好。

刀具信息区

单击 刀具补偿参数 后,可在弹出的对话框中设置刀具参数。

手动操作区

用户可通过单击按钮或小键盘上的数字键(0、1、2、4、6、8、9)实现相应操作。

轴方向按钮

- 单击轴方向按钮: 机床以手动低速运动。
- 单击 快速 后,再单击轴方向按钮:机床以手动高速运动。

进给方式

- 连续方式:按下轴方向按钮,机床连续运动直至松开。
- 步进方式: 每按一次轴方向按钮, 对应轴运动给定的步长。
 - 0.1/1: 对应轴运动 0.1 或 1 的步长。
 - >>10: 自定义步长。点击左半边黄色区表示以自定义步长移动主轴,点击 右半边灰色区则弹出步长设定对话框。

注意: 自定义步长值不宜设置过大,以免因误操作而损坏机床,并且系统执行点动指令时需一定时间,请勿频繁点击。

• 手轮方式: 手轮方式操作步骤图解如下。

CCD 功能操作

CCD 功能的主要实现原理是根据找到的特征点位置,调整坐标系,并在加工过程使用调整后的坐标系进行加工。

CCD 设定包含以下几个操作步骤:

- 1. 设置相机
- 2. 加工前设定
- 3. 设定拍照点
- 4. 其他设置

设置相机

需要设置相机的两个参数:曝光和增益。

过程:

- 1. 切换至参数页面,勾选开启设定。
- 2. 拖动滑动条,调节相机参数 曝光 和 增益 值。

注意事项

- 合理设置相机曝光。 相机的曝光如果设置太高,采集的帧率会降低。因此,在设置完曝光后,需要 考虑系统中的拍照延时时间是否需要增大。
- 一般情况下,拍照延迟时间>(100+曝光时间),单位为 ms。
 此处的 100ms 是机床的停稳时间。一般情况下,机床停稳时间按此计算即可。

举例

上图中,曝光设置为 7%,即曝光时间为 0.035s(35ms),则拍照延迟时间设置为 200ms 是合理的。

加工前设定

CCD 加工前,需要先确认以下三个数值:

- 焦距
- 倍率
- 主轴与 CCD 偏距

以上三个数值在机床安装完成以后,就固定了。在更换或者维修机床(重新安装相机或者镜头)以后,这3个数值需要重新测量。

设定焦距

设定焦距的目的:设定加工时,运动到拍照点以后,Z 轴运动到该机械坐标以后再进行拍照。

过程:

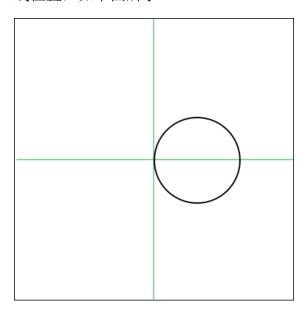
- 1. 手动移动 Z 轴, 直至相机可以拍到清晰的图片。
- 2. 使用手轮,切换到 **X10** 档位,控制 Z 轴上下微调,直至找到最清晰的位置。
- 3. 点击 **焦距设定 → 取当前点**。

测量倍率

测量倍率的目的:为了得到像素与位移之间的比例关系。若倍率错误,那么最后 CCD 结果也是错误的。

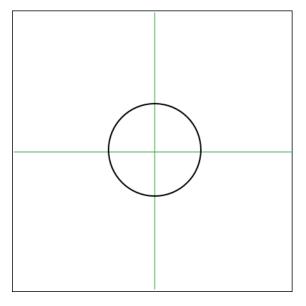
过程:

- 1. 切换到设定页面,并勾选开启设定。
- 2. 设置机床运动距离。比如设置为 1mm。
- 3. 点击 **取特征** 按钮,设定测量倍率时查找的特征点。 该特征点必须 是在相机视野中是 **唯一** 的。详细请参阅 测量倍率时,选取的特征点有何要求?
- 4. 点击 开始 按钮。
- 5. 测量完成以后,反复点击 开始 按钮,进行多次测量。
- 6. 点击 测量记录 按钮,查看测量结果,将波动比较大的值剔除。

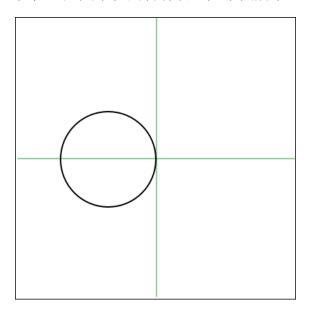

设定主轴与 CCD 偏距

在加工之前,需要先测量主轴与 CCD 的偏距。如无此偏距值,加工的工件会在 X Y 方向存在一个固定偏移。

测量 **主轴与 CCD 偏距** 的主要思路: 先用主轴在治具或者工件上打一个孔,记录下当前主轴位置; 然后再将相机对着这个孔的中心,记录下主轴位置。二者之间差值即为 **主轴与 CCD 偏距**。


过程:

- 1. 寻找一个治具中无用的区域。 需要打孔,故需要确保选定的区域不影响后面的使用。
- 2. 摇动手轮,让 Z 轴慢慢接近治具表面。
- 3. 开启主轴,将手轮调到 X10 档,将 Z 慢慢加深,在治具表面钻一个孔,然后关闭主轴。
- 4. 点击 **记录刀具** 按钮。
- 5. 摇动手轮,在 CCD 画面找到之前的打孔位置,将相机中心对着孔的 X 方向切线位置,如下图所示。



6. 直接在 X 方向步进一个刀具半径。此时, X 方向坐标即为当前圆心位置。如下图所示。

可以步进两次,若刀具半径正确,此时 CCD 中心应该在另一边切线位置。可以检查刀具半径是否有误。如下图所示。

7. 同理 Y 方向也执行上述操作,找到 Y 方向的圆心位置。

8. 点击 设定偏距 进行设定。

设定拍照点

相关概念

拍照方式

按照拍照点个数,拍照方式包括:

• 单点拍照

单点拍照只能用来加工圆。编程时,需要以圆心为工件原点编程。在 CCD 拍照以后,会将找到的圆心做为工件原点。

• 两点拍照

两点拍照时,首先需要设好工件坐标。两点拍照时,拍照点的位置为图纸上的这两个点的理论坐标。

• 三点拍照

三点拍照时,三个点必须呈直角三角形。客户编程时,需要以斜边的中心点为工件原点进行编程。

• 四点拍照

四点拍照与三点拍照类似。在三点拍照时,若其中有一个点拍照失败,才需要去拍第四个点。

四种拍照方式对比

综上,四种拍照方式的异同点包括:

- 1. 两点拍照,拍照点位置为工件坐标;其他拍照方式使用的是机械坐标。
- 2. 两点拍照,拍照点位置需要手动输入,位置为图纸上的理论位置;其他拍照方式可以直接运动到对应位置直接设定。
- 3. 两点拍照在加工前必须先设置好坐标系,其他拍照方式只直接根据拍照后的实际位置重新设定坐标系。
- 4. 四点拍照实际上是三点拍照的升级版。三点拍照时,若整体成功率不高,可以 使用四点拍照提高成功率。

设置图片匹配模式

工件加工时,大多数的特征点都一样的,比如全面屏手机玻璃上,两个拍照点位置都是十字。也有一些玻璃特征点是不一致的,比如矩形的边缘的直角。

对于所有拍照点特征完全一样的,客户只需要设置一个模板即可;对于所有拍照点特征不一样的,客户需要为每个拍照点都设置下模板。

过程:

在参数→操作参数下,找到参数图像匹配模式。

- 若特征点完全一样,将该参数设置为0。
- 若特征点不一样,将该参数设置为1。

单点拍照

讨程:

1. 将参数 CCD 系统拍照方式 设置为 1。

此处拍照实际上只是记录拍照点位置。

- 2. 运动到圆心位置,点击 **拍照** 按钮。
- 3. 点击模板编辑按钮,在弹出的轮廓定位对话框中,设置拍照点的模板。

两点拍照

过程:

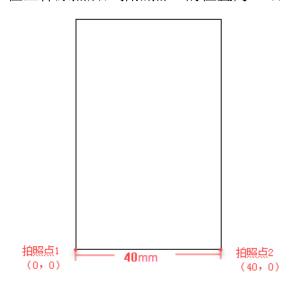
- 1. 设置工件原点。
- 2. 将参数 CCD 系统拍照方式设置为 2。
- 3. 手动输入标识 1、标识 2 的拍照点位置。

此处的拍照点位置必须为图纸上拍照点的理论位置。详细请参见下方推荐做法。

4. 点击模板编辑按钮,在弹出的轮廓定位对话框中,设置拍照点的模板。

推荐做法:

将工件原点定在其中一个拍照点,另一个拍照点位置直接通过手动输入图纸上两个拍照点的距离即可。


- 1. 勾选 工艺 页面中 以 CCD 中心定工件原点。
- 2. 运动到第一个拍照点位置,分别点击 清零 → X 清零 、 Y 清零 。
- 3. 在拍照点1位置点击取当前点。此时,拍照点1位置即为工件原点位置。

- 4. 根据两个拍照点之间的距离,手动输入第二个拍照点位置。
- 5. 点击模板编辑按钮。弹出轮廓定位对话框,设置拍照点的模板。

举例:

下图中,拍照点 1 和拍照点 2 在 X 方向水平,两点间隔为 40mm,将拍照点 1 定位工件原点后,拍照点 2 的位置为 X40, Y0。

三点拍照

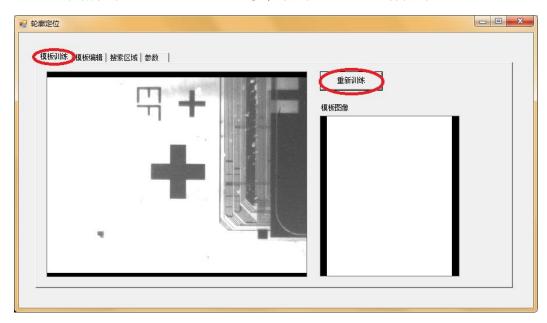
过程:

- 1. 将参数 CCD 系统拍照方式 设置为 3。
- 2. XY 运动到第一个拍照点位置,点击标识 1 的 取当前点 按钮。
- 3. XY 运动到第二个拍照点位置,点击标识 2 的 取当前点 按钮。
- 4. XY 运动到第三个拍照点位置,点击标识 3 的 **取当前点** 按钮。
- 5. 点击 **模板编辑** 按钮,在弹出的 **轮廓定位** 对话框中,设置拍照点的模板。

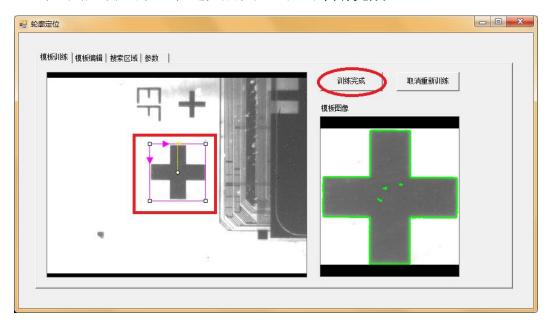
四点拍照

若三点拍照过程中,有某个点拍照失败,继续拍第四个点。

- 1. 将参数 CCD 系统拍照方式 设置为 4。
- 2. XY 运动到第一个拍照点位置,点击标识 1 的 **取当前点** 按钮。
- 3. XY 运动到第二个拍照点位置,点击标识 2 的 取当前点 按钮。
- 4. XY 运动到第三个拍照点位置,点击标识 3 的 取当前点 按钮。
- 5. XY 运动到第四个拍照点位置,点击标识 4 的 取当前点 按钮。
- 6. 点击 **模板编辑** 按钮,在弹出的 **轮廓定位** 对话框中,设置拍照点的模板。

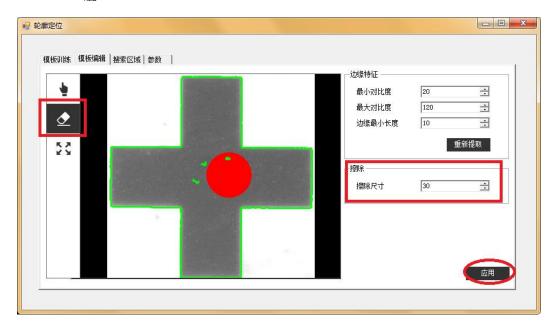


编辑模板

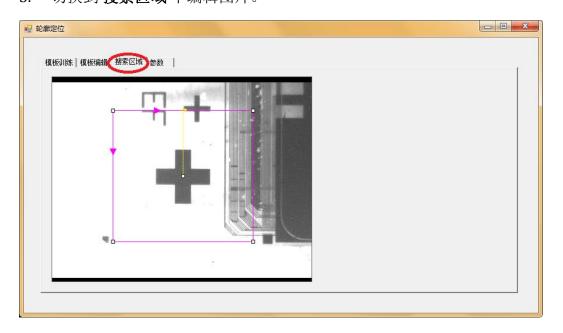

模板编辑的目的就是提取当前拍照点的特征,在加工时候根据提取的特征找到图片中特征点所在位置。

过程:

- 1. 点击模板编辑按钮。弹出轮廓定位对话框。
- 2. 在轮廓定位对话框中,选择模板训练。点击重新训练按钮。

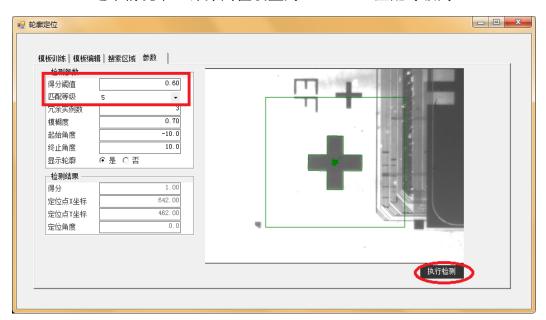


3. 将模板训练中出现的矩形框拖选到特征点所在位置。矩形框大小需要和特征点 大小相当就可以。框选完成以后,点击 **训练完成**。



- 4. 切换到模板编辑中,对提取出的特征进行处理。
 - 最小对比度、最大对比度是设置特征点的对比度。
 - 一般情况下最小对比度设置为 20~80, 最大对比度设置为 60~120。
 - 若图片比较模糊,特征点对比不明显可以将这两个值调低。
 - 边缘最小长度是提取出的特征边缘的最小像素,一般情况下设置为 10 即 可。
 - **擦除尺寸** 是用来擦除干扰时橡皮擦的大小。擦除完成以后,点击 **应用** 按 钮。

5. 切换到 搜索区域 中编辑图片。



一般情况下,工件摆放不会很偏,基本上特征点就是在图像的中心位置附近,所以搜索区域可以选择局部的区域,即框选较小的范围。

若整张图片框选,那查找特征点的时候会在整张图片范围内去查找,匹配就会更耗时。

- 6. 切换到参数页面,设置轮廓匹配基本参数。
 - 只需要设置 **评分阈值** 和 **匹配等级** 即可。
 - 若图片质量比较好,评分阈值和匹配等级可以设置高一些。
 - 通常情况下,评分阈值设置为 0.3~0.7, 匹配等级为 4~6。

设置完成以后,可以点击 执行检测 按钮,测试下当前是否可以拍照成功。

注意事项:

- 1. 取模板时,工件要放正,不能在特征点倾斜的情况下去取特征点。
- 2. 提取的轮廓特征点数量要足够多。此处特征点能表述轮廓特征即可,干扰需要擦除。
- 3. 参数 **评分阈值** 与 **匹配等级** 要设置合理,太低容易找错;太高容易找不到。具体多少根据图像质量来决定。
- 4. 设置完成以后要反复观察是否存在找错的情况。

其他设置

介绍其他辅助功能使用和设定。

图像显示

目前,图像显示有两种模式:

- 显示相机采集的实时图像
- 显示拍照后的图像

在匹配完成后,无论匹配是否成功,相机图像窗口实时显示的是当前已匹配的图像;若需要切换至相机实时图像,只需鼠标点击相机图像显示窗口即可。

阵列加工

- 1. 切换至工艺设置页面。
- 2. 勾选 开启设定,输入制造商密码。
- 3. 勾选 阵列加工。
- 4. 设置阵列加工行数、行列间距。

CCD 是否使用

客户可以根据加工工艺需要,决定是否使用 CCD。

- 1. 切换到工艺设置页面。
- 2. 勾选开启设定,输入制造商密码。
- 3. 勾选 **CCD** 是否使用。

工件补偿

由于刀具磨损等原因,加工的工件尺寸可能出现偏差,此时可通过"补偿"功能校正尺寸偏差。

过程:

- 1. 切换到工艺设置页面。
- 2. 勾选工件补偿启用,输入制造商密码。
- 3. 设置 **X/Y** 尺寸 和 **X/Y** 补偿 参数。

安全偏移

在实际加工中,客户治具一般镂空比较小。若此时工件摆放的比较偏,若此时直接加工,可能就会切坏治具。

安全偏移量和安全偏移角度需要根据治具镂空决定具体误差范围。

- 1. 切换到参数设置页面。
- 2. 修改参数值。
- X 向安全偏移量
- Y 向安全偏移量
- 安全偏移角度

模拟加工

在所有设置完成以后,可以执行一次模拟加工。

过程:

直接点击 CCD 设定 页面中的模拟加工 按钮即可。

有关模拟加工与真实加工的区别,详细请参阅模拟加工与真实加工有何区别。

按刀具阵列加工功能

合理调用按刀具阵列加工功能可有效节约频繁换刀的时间,提高加工效率。

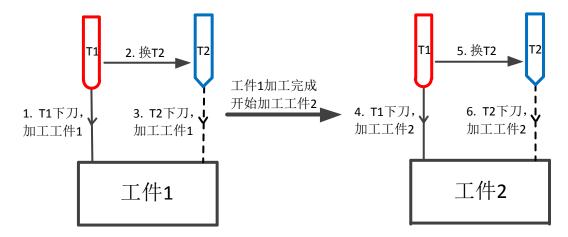
过程:

- 1. 在功能选项卡点击参数→操作,切换至操作参数页面。
- 2. 点击制造商,输入制造商密码。
- 3. 将 CCD 参数下的 是否按刀具阵列加工 参数设置为"是"。

原理:

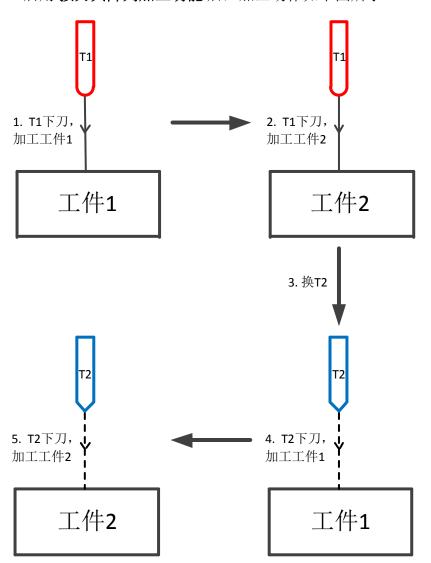
• 系统默认遵循以下加工规则:

以每个工件为单位,加工完当前工件后,重复之前换刀动作加工下一个工件。


• 启用 按刀具阵列加工功能 后,系统遵循以下加工规则:

以所有工件为单位, 先用一把刀具把阵列中所有工件都加工一遍, 再换另外的刀加工所有工件。即, 每把刀具走遍所有工件再换刀。

举例:


假设有 T1、T2 两把刀具加工工件 1 和工件 2。

• 系统默认加工动作如下图所示。

• 启用 按刀具阵列加工功能 后,加工动作如下图所示。

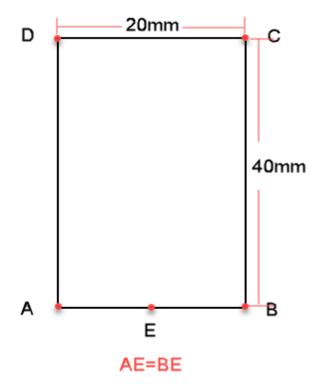
常见问答

CCD 是否可能存在误差? 为什么会有误差?

CCD 可能存在误差。

图像算法是以像素为单位的,图像算法的精度就是±1 像素。

举例:


若放大倍率为 200, 即 200 个像素对应 1 毫米, 那么 CCD 的误差范围为±0.005。

一般情况下,CCD 加工出来成品的误差会有多大?

CCD 在拍照点处的误差为±一个像素,但是最后实际加工出来的成品的误差要根据 具体工件来决定。

举例:

若加工如下所示的工件:

则:加工的 C点的最大误差为 CE/BE*1 像素,约为 2.2 像素。

若放大倍率为200,此时:

- C点、D点的最大误差为 0.011
- A 点、B 点的最大误差为 0.005mm

若加工后的成品偏差不稳定,该如何排查?

若使用 CCD 加工出的工件有偏差,首先需确认这个误差范围是不是在 CCD 合理误差范围内。

- 工件偏差在 CCD 合理误差范围以内,不用调整。
- 工件偏差超出 CCD 合理的误差,根据以下步骤进行排查。

排查步骤:

- 1. 检查放大倍率是否正确。详细请参阅测量倍率。
- 2. 检查相机或者镜头的安装是否有问题,比如相机或者镜头没有固定好。
- 这里排查可以先用手拍下,看下成像是否有晃动。
- 手动运动测试。详细请参阅如何测试相机或镜头是否固定良好。
- 3. 检查拍照点设置是否有误。详细请参阅设置拍照点。
- 4. 检查拍照延时时间,确认此时间是否太短。

若拍照延时太短,会导致机床没有停稳就拍照计算了,此时得到的图像实际可能不是运动到拍照点后取得的图像,因此会导致计算出来的位置有偏差。

5. 检查是否模板参数设置有问题,导致拍照出错。

若模板参数设置不合理,会导致图片匹配时候找错。

建议在设置完模板参数以后,先观察一段时间,保证加工稳定后交付最终客户正常生产。

如何测试相机或镜头是否固定良好?

可通过手动移动 X、Y 轴运动一段距离后,到拍照点拍照,保存图片后进行前后对比分析。

排查步骤:

- 1. 手动移动 X 轴,往负方向运动一段距离。
- 2. 点击 **到拍照点**,将当前图片保存。
- 3. 手动移动 X 轴朝正方向运动一段距离。
- 4. 点击 到拍照点,将当前图片保存。
- 5. 同理,手动移动 Y 轴,重复上述操作,在 Y 方向运动固定的一段距离,然后点击 **到拍照点** 保存当前图片。
- 6. 使用图片浏览工具浏览保存的图片, 查看图片有无变化。

若图片有变化,说明相机未固定好或者机床精度有问题。

若拍照点位置设置错误,有何影响?

两点拍照时,若拍照点位置设置错误,会导致加工出来的产品有一个偏差。

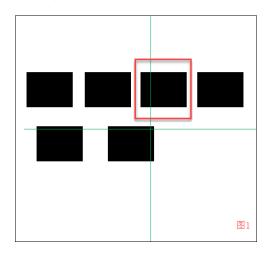
在使用两点拍照时,一般情况下两个拍照点是水平或者垂直的,两个拍照点的坐标 应该是对称的。

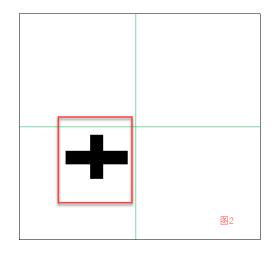
模拟加工与真实加工有何区别?

模拟加工和真实加工的主要区别在以下两方面:

- 真实加工使用刀尖去加工;模拟加工使用相机视野中心,沿着刀路进行仿真加工。
- 真实加工时, Z 方向是按照刀路轨迹执行的; 模拟加工时, Z 轴是在准焦高度上运动的。

因此,在正式加工前,推荐执行模拟加工,排查所有设置是否正确。


测量倍率时,对选取的特征点是否有要求?


有。

测量倍率时设定查找的特征点必须满足: 该特征点在相机视野中是唯一的。

举例:

图 1 中的矩形在相机视野中不唯一,不能作为特征点去进行测量倍率;图 2 中的十字在相机视野中是唯一的,故可以作为测量倍率的特征点。

术语及参数

介绍 CCD 软件中重要的概念及参数。

焦距

在拍照时,只有 Z 在某一个固定位置时候,才可以拍到清晰图片,这个位置称之为焦距。

放大倍率

图像算法是以像素为单位的, 机床加工是以毫米为单位的。像素和毫米单位的比例 关系称之为放大倍率。

举例: 放大倍率为 200, 意味着 200 像素=1mm

主轴与 CCD 偏距

CCD 中心和主轴中心的偏移。CCD 加工时,是根据图像中心结合拍照位置,得到实际点的位置;但是加工时,是以主轴去加工的。二者之间的间距称之为 **主轴与** CCD 偏距。

曝光

指在摄影过程中进入镜头照射在感光元件上的光量,由光圈、快门、感光度的组合来控制。

曝光值代表能够给出同样曝光的所有相机光圈快门组合。

增益

此处指相机的增益,与相机的 **曝光** 一起,用于补偿相机成像过程中光量,提高成像质量。

专业·专心·专注

SPECIALIZED/CONCENTRATED/FOCUSED

上海维宏电子科技股份有限公司

地址: 上海市奉贤区沪杭公路1590号 邮编: 201401 咨询热线: 400 882 9188 邮箱: weihong@weihong.com.cn 网址: www.weihong.com.cn